those triangles furthest from the C atoms, and also to give different weights to the ortho-meta path (A) than to the ortho-ortho paths (BCDE) in order to fit the unusual features of the observed product distribution. For example, if rotation by 120° of those triangles which break the fewest B-C bonds is allowed to occur preferentially $(4,8,9 ; 7,8,12 ; 5,9,10 ; 10,11,12$ in A ; 8,9,12 in B and D; and 9, 10, 12 in C and E) and if path A is given $10 \%^{\text {bb }}$ of the weight and the other 90% is divided equally among BCD and E, the calculated yields are $63,31,1,0,1,3,1$, and 0% after one step and $0,0,0,0,23,28,35$, and 14% after many steps of this mechanism (products are listed in the order $9-\mathrm{Br}-\mathrm{o}$, $8-\mathrm{Br}-o, 4-\mathrm{Br}-0,3-\mathrm{Br}-o, 9-\mathrm{Br}-m, 5-\mathrm{Br}-m, 4-\mathrm{Br}-m, 2-\mathrm{Br}-m$). Yields for intermediate times are reproduced almost as well.

Other derivatives (such as $8-\mathrm{Br}-0,4-\mathrm{Br}-\mathrm{o}$, and $3-\mathrm{Br}-0$, separated from isomerization mixtures of $9-\mathrm{Br}-o$) have also been subjected to these rearrangements. The same general mechanism is found to apply but with some small changes in the weighting of the ortho-meta pathways and with some other changes in the restrictions of triangle rotations probably associated in an interesting way with differences in bonding in these isomers.

Further studies are under way on more complex systems, and at higher temperatures, at which para compounds are produced upon further transformations of meta isomers.

Table I. Yields (per cent) for the Rearrangements of 9-Bromo-o-carborane at 420-425 ${ }^{\circ}$

	Time, min			
Product	30	60	210	330
$9-\mathrm{Br}-o$	68	52	20	0
$8-\mathrm{Br}-o$	21	23	14	0
$4-\mathrm{Br}-\sigma$	3	8	8	0
$3-\mathrm{Br}-o$	0	1	4	0
$9-\mathrm{Br}-m$	3	6	15	24
$5-\mathrm{Br}-m$	4	7	18	28
$4-\mathrm{Br}-m$	1	3	17	35
$2-\mathrm{Br}-m$	0	0	4	13

Acknowledgment. We wish to thank the Office of Naval Research for support and H. Schroeder for chemicals.
(9) On leave from the University of California at Los Angeles, Los Angeles, Calif.
H. D. Kassz, ${ }^{9}$ R. Bau, H. A. Beall, W. N. Lipscomb
Department of Chemistry, Harcard University
Cambridge, Massachusetts 02138
Receiced June 7,1967

Structure of the Carborane $\mathbf{B}_{6} \mathbf{H}_{6} \mathbf{C}_{2}\left(\mathbf{C H}_{3}\right)_{2}$

Sir:
Of the polyhedral carborane structures, $\mathrm{B}_{6} \mathrm{H}_{6} \mathrm{C}_{2} \mathrm{H}_{2}$, which we study here as its $\mathrm{C}, \mathrm{C}^{\prime}$-dimethyl derivative, is of uncertain structure. The interpretation ${ }^{1}$ of the ${ }^{11} \mathrm{~B}$ nuclear magnetic resonance (nmr) spectrum on the basis of the polyhedron established ${ }^{2}$ to have $D_{2 d}$ sym-

[^0]metry in $\mathrm{B}_{8} \mathrm{Cl}_{8}$ requires that two different types of B atoms in $\mathrm{B}_{6} \mathrm{H}_{6} \mathrm{C}_{2}\left(\mathrm{CH}_{3}\right)_{2}$ have a coincident ${ }^{11} \mathrm{~B}$ resonance in the spectrum taken at 12.8 Mc . This coincidence remains in the $19.3-\mathrm{Mc}{ }^{11} \mathrm{~B} \mathrm{nmr}$ spectrum, which led to some favoritism ${ }^{3}$ for the structure derived from the Archimedian antiprism of $\mathrm{D}_{4 \mathrm{~d}}$ symmetry for an equalatom structure; however, the ambiguity of this conclusion was recognized, and study of the ${ }^{11} \mathrm{~B} \mathrm{nmr}$ spectrum at still higher resolution was recommended. ${ }^{3}$ A dynamical structure, fluctuating between these, is also a possibility, ${ }^{4}$ but now seems less likely in view of the higher temperatures normally required for polyhedral carborane rearrangements. Also, and finally, one type of intermediate structure which has only one square face is plausible, ${ }^{4}$ and we shall show that the actual structure has very slight distortions toward this intermediate. Also, we establish with certainty the positions of the carbon atoms in the $\mathrm{B}_{6} \mathrm{C}_{2}$ polyhedron.

Results were obtained from three-dimensional X-ray diffraction data obtained from a single crystal at about -50°. The space group is $\mathrm{C} 2 / \mathrm{c}$, and there are four molecules in a unit cell having parameters $a=15.24$, $b=5.89, c=12.74 ; \beta=131.4^{\circ}$. The structure, solved from Sayre's equations ${ }^{5}$ (in a modified form of the multiple-solution program of Long ${ }^{6}$), has yielded a value of $R=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}_{1}}^{\prime \prime}\right| \Sigma\right| F_{\mathrm{o}} \mid=0.11$ for 491 observed reflections. The molecule (Figure 1) has C_{2} symmetry, coincident with a crystallographic C_{2} axis. The $\mathrm{B}_{6} \mathrm{C}_{2}$ polyhedron is based upon the same idealized polyhedron as was found in $\mathrm{B}_{8} \mathrm{Cl}_{8}$, and shown ${ }^{4}$ to have satisfactory molecular orbitals for both $\mathrm{B}_{8} \mathrm{H}_{8}\left(\mathrm{D}_{2 \mathrm{~d}}\right)$ and $\mathrm{B}_{8} \mathrm{H}_{8}{ }^{2-}\left(\mathrm{D}_{2 \mathrm{~d}}\right)$. The C atoms are separated from one another and in the positions expected for greatest stability in their interactions with the molecular orbitals. Thus it is probable that less stable isomers can occur if preparative methods are less drastic. The distances are comparable in a general way with those ${ }^{2}$ in the $\mathrm{B}_{8} \mathrm{Cl}_{8}$ polyhedron: bonds at atomic sites having smaller number of coordination tend to be shorter, and the shortest distances are the 1,2 and 7,8 distances, whereas the longest distances are between adjacent pairs among the $3,4,5$, and 6 atoms in both $\mathrm{B}_{5} \mathrm{Cl}_{8}$ and $\mathrm{B}_{6} \mathrm{H}_{6} \mathrm{C}_{2}\left(\mathrm{CH}_{3}\right)_{2}$.

The smaller covalent radius of C is probably a major factor which appears to shorten distances near carbon atoms. The larger nuclear charge on C , as compared to B, appears to withdraw electrons from the adjacent B atoms, and the relatively long $\mathrm{B}_{3}-\mathrm{B}_{4}$ distance of $1.89 \pm$ 0.01 A is directly comparable with less precisely established distances of $1.89 \pm 0.04 \mathrm{~A}$ in $m-\mathrm{B}_{10} \mathrm{Br}_{2} \mathrm{H}_{8} \mathrm{C}_{2} \mathrm{H}_{2}{ }^{7}$ and $1.89 \pm 0.06 \mathrm{~A}$ in $m-\mathrm{B}_{10} \mathrm{Cl}_{10} \mathrm{C}_{2} \mathrm{H}_{2}{ }^{8}$ for a bond between B atoms each joined to two C atoms. However, in the molecule $\mathrm{B}_{7} \mathrm{H}_{7} \mathrm{C}_{2}\left(\mathrm{CH}_{3}\right)_{2}$ of C_{2} symmetry (iike $\mathrm{B}_{9} \mathrm{H}_{9}{ }^{-2}$ of $\mathrm{D}_{3 \mathrm{~h}}$ symmetry) this type of B-B distance is

80, 5571 (1958); (c) W. N. Lipscomb, "Boron Hydrides," W. A. Benjamin Co., New York, N. Y., 1963, p 23; (d) G. S. Pawley, Acta Cryst., 20, 631 (1966).
(3) F. N. Tebbe, P. M. Garrett, D. C. Young, and M. F. Hawthorne, J. Am. Chem. Soc., 88, 609 (1966).
(4) W. N. Lipscomb, Science, 153, 373 (1966). The unpublished molecular orbital studies of $\mathrm{B}_{8} \mathrm{H}_{8}\left(\mathrm{D}_{2 \mathrm{~d}}\right)$ and $\mathrm{B}_{8} \mathrm{H}_{8}{ }^{2-}\left(\mathrm{D}_{2 \mathrm{~d}}\right)$ referred to here were carried out by R. Hoffmann.
(5) D. Sayre, Acta Cryst., 5, 60 (1952).
(6) R. E. Long, "A Program for Phase Determination by Reiterative Application of Sayre's Equation," Ph.D. Thesis (Part III), University of California at Los Angeles, 1965 .
(7) H. A. Beall and W. N. Lipscomb, Inorg. Chem., 6, 874 (1967).
(8) J. A. Potenza and W. N. Lipscomb, Proc. Natl. Acad. Sci. U. S., 56, 1917 (1966).

Figure 1. The structure of $\mathrm{B}_{6} \mathrm{H}_{6} \mathrm{C}_{2}\left(\mathrm{CH}_{3}\right)_{2}$. Methyl groups at 1^{\prime} and 7^{\prime} are attached to carbon atoms 1 and 7, respectively. Bond distances (all $\pm 0.01 \mathrm{~A}$) are $\mathrm{C}_{1}-\mathrm{B}_{2}=1.50, \mathrm{C}_{1}-\mathrm{B}_{3}=1.70, \mathrm{C}_{1}-\mathrm{B}_{4}=1.60$, $\mathrm{C}_{1}-\mathrm{B}_{5}=1.70, \mathrm{~B}_{2}-\mathrm{B}_{3}=1.77, \mathrm{~B}_{2}-\mathrm{B}_{5}=1.81, \mathrm{~B}_{2}-\mathrm{B}_{6}=1.70, \mathrm{~B}_{3}-\mathrm{B}_{4}=$ $1.89, \mathrm{~B}_{3}-\mathrm{B}_{8}=1.84$, and $\mathrm{B}_{5}-\mathrm{B}_{8}=1.90 \mathrm{~A}$. The $\mathrm{B}_{2}-\mathrm{B}_{8}$ distance is 2.87 A while the $\mathrm{C}_{1}-\mathrm{C}_{7}$ distance is 2.60 A . Other distances are related to these by the molecular twofold axis.
$1.76 \mathrm{~A} .^{9}$ It is even more interesting that the $\mathrm{B}_{3}-\mathrm{B}_{4}$ and $\mathrm{B}_{5}-\mathrm{B}_{6}$ distances of 1.89 and 1.90 A , respectively, are more than five standard deviations longer than the 1.84-A distances, $\mathrm{B}_{2}-\mathrm{B}_{6}$ and $\mathrm{B}_{4}-\mathrm{B}_{5}$. Thus there appears to be a tendency for both the $\mathrm{C}_{1} \mathrm{~B}_{3} \mathrm{~B}_{4} \mathrm{C}_{7}$ unit $\left[\left(\mathrm{C}_{1}-\mathrm{C}_{7}\right) /\right.$ $\left.\left(\mathrm{B}_{3}-\mathrm{B}_{4}\right)=1.37\right]$ and the $\mathrm{B}_{2} \mathrm{~B}_{5} \mathrm{~B}_{8} \mathrm{~B}_{6}$ unit $\left[\left(\mathrm{B}_{2}-\mathrm{B}_{8}\right) /\left(\mathrm{B}_{5}-\mathrm{B}_{6}\right)\right.$ $=1.51]$ to deviate slightly toward a squarelike shape, as compared with the idealized ratio of 1.62 from, for example, an icosahedron.

Molecular orbital calculations will be presented in the full paper after revision of our program to new methods ${ }^{10}$ and after determination of other carborane structures. All previous molecular orbital studies have been carried out on idealized geometries; it will probably be of importance to reexamine these molecules theoretically when detailed geometries become available.

Note Added in Proof. The geometry of $\mathrm{B}_{8} \mathrm{H}_{8}{ }^{2-}$, which is isoelectronic with $\mathrm{B}_{6} \mathrm{H}_{6} \mathrm{C}_{2} \mathrm{H}_{2}$, has been described by F. Klanberg, D. R. Eaton, L. J. Guggenberger, and E. L. Muetterties [Inorg. Chem., 6, 1271 (1967)]. The geometry and distortions from regular distances are like those found in $\mathrm{B}_{8} \mathrm{Cl}_{8}$ which has consistently been described as a molecule of $\mathrm{D}_{2 \mathrm{~d}}$ symmetry (see ref 2).

Acknowledgment. We wish to thank M. F. Hawthorne for the sample, the Office of Naval Research for support of the research, and the National Science Foundation for a fellowship to H. V. H.
(9) T. F. Koetzle, F. E. Scarborough, and W. N. Lipscomb, submitted for publication. The framework C atoms in $\mathrm{B}_{7} \mathrm{H}_{7} \mathrm{C}_{2}\left(\mathrm{CH}_{3}\right)_{2}$ are at two of the three apical positions, which are each coordinated to four B atoms.
(10) M. D. Newton, F. P. Boer, and W. N. Lipscomb, J. Am. Chem. Soc., 88, 2353 (1966).

H. V. Hart, W. N. Lipscomb
 Department of Chemistry, Harvard University Cambridge, Massachusetts 02138
 Received June 7, 1967

The Reaction of Ribonuclease-A with o-Nitrophenyl Hydrogen Oxalate

Sir:
We report herein the initial results of our study of the reaction of o-nitrophenyl hydrogen oxalate anion (o -NPO^{-}) with RNase. ${ }^{1}$ The reaction of p-nitrophenyl acetate with RNase has, in our hands as well as in those

[^1]

Figure 1. Plot of absorbance (at $372.5 \mathrm{~m} \mu$, the isosbestic point for o-nitrophenol and o-nitrophenolate) vs. time for the reaction of bovine ribonuclease-A with o-nitrophenyl hydrogen oxalate anion ($4.45 \times 10^{-4} \mathrm{M}$) at $30^{\circ} ; \mathrm{pH} 5.9$ in 0.1 M collidine perchlorate buffer (O, enzyme $=3.08 \times 10^{-5} M ; \Delta$, enzyme $=2.2 \times 10^{-5} \mathrm{M} ; \mathrm{O}$, no enzyme).
of Ross and co-workers, ${ }^{2}$ been found to be a very slow reaction comparable to the nonenzymic reaction of this ester with insulin. ${ }^{3}$ In contrast the reaction of RNase with the negatively charged $o-\mathrm{NPO}^{-}$proceeds in two parts (Figure 1): (1) an "initial burst" which is first order in both enzyme and substrate following Line-weaver-Burk kinetics; and (2) a slower liberation of o-nitrophenol in a nonenzymic bimolecular reaction of protein and substrate to completion of hydrolysis. Extrapolation of the initial-burst reaction to zero buffer provides $K_{\mathrm{m} \text { (app) }}=1.25 \times 10^{-3} M$ and $k_{\text {cat }}=0.31$ $\min ^{-1} .{ }^{4}$ Comparison of $K_{\mathrm{m}(\mathrm{app})}$ and $k_{\text {cat }}$ for $0-\mathrm{NPO}^{-}$to the values for cytidine $2^{\prime}, 3^{\prime}$-cyclic phosphate ${ }^{5,6}$ indicates that the apparent binding constant for the cyclic phosphate ester is approximately four times greater and $k_{\text {cat }} 100$ times greater than the corresponding constants for $o-\mathrm{NPO}^{-}$(with acetate buffer $K_{\mathrm{m}}=3 \times 10^{-4} \mathrm{M}$ and $k_{\text {cat }}=39 \mathrm{~min}^{-1}$ for the cyclic phosphate ester).

For the reaction of the RNase derivative S-protein, ${ }^{7}$ $K_{\mathrm{m}(\mathrm{app})}$ was found to be the same as for RNase while $k_{\text {cat }}$ was found to be decreased by 40%. For Asp ${ }_{53}$ converted to methyl ester $K_{\mathrm{m}(\mathrm{app})}$ also remains the same as for RNase, but $k_{\text {cat }}$ is decreased by but 20%. Completely reduced RNase with all sulfhydryl groups carboxymethylated and RNase with all $\mathrm{S}-\mathrm{S}$ bonds oxidized

[^2]
[^0]: (1) R. E. Williams and F. J. Gerhart, J. Am. Chem. Soc., 87, 3513 (1965).
 (2) (a) R. A. Jacobson and W. N. Lipscomb, J. Chem. Phys., 31, 605 (1959); (b) R. A. Jacobson and W. N. Lipscomb, J. Am. Chem. Soc.,

[^1]: (1) For the rational leading to this study see T. C. Bruice and B. Holmquist, J. Am. Chem. Soc., 89, 4028 (1967).

[^2]: (2) C. A. Ross, A. P. Mathias, and R. B. Rabin, Biochem. J., 85, 145 (1962).
 (3) E. S. Hartley and B. A. Kilby, ibid., 56, 288 (1954).
 (4) $\mathrm{E}+\mathrm{S} \stackrel{K_{\mathrm{m}(\text { app })}}{\longleftrightarrow} \mathrm{ES} \xrightarrow{k_{\text {cat }}}$ products +E
 (5) D. G. Herries, A. P. Mathias, and R. B. Rabin, Biochem. J., 85, 127 (1962).
 (6) H. Witzel, Progr. Nucleic Acid Res., 2, 221 (1963).
 (7) S-Protein, R Nase with residues $1-20$ removed by subtilisin, was found to have 6% activity toward cyclic phosphate. Considering this to be due to contamination by RNase the determined value of $k_{\text {cat }}$ for S-protein reacting with o-NPO ${ }^{-}$has been corrected.

